

High **Moisture** Corn Drying and Storage

Kenneth Hellevang, Ph.D., P.E. Extension Engineer & Professor

NDSU

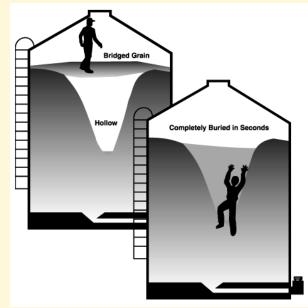
Department of Agricultural and Biosystems Engineering North Dakota State University, Fargo ND

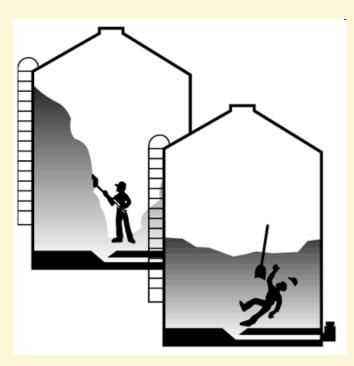
"Estimated" Corn Field Drying

	EMC	PET	Est. Drying (%pt)		
	(%)	(in)	Month	Week	
Sep	15	4.0-5.0	18	4.5	
Oct	16	2.8-3.5	11-12	2.5	
Nov	19	0.8-1.2	4-5	1	
Dec	20	0.5-0.8	2	0.5	
Jan	21	0.5-0.8	2	0.5	
Feb	21	0.5-0.9	3	0.8	
Mar	19	1.3-1.6	5	1	
Apr	16	3.2-4.5	16	4	
Мау	14	6.5-8.5	30	7	

NDAWN, Weather, Total PET, Estimate:1-inch = 4% drying EMC-equilibrium moisture content, PET=Potential Evapotranspiration

Moisture Meter Error


- Calibrated for 15% corn error on high moistures
- Adjust for temperature
 - Not accurate <40°F</p>
- Electronic meters more sensitive to outside of kernel
 - Moisture variation after rapid drying
- Meters affected by condensation
- Measure moisture content
- Place sample in sealed container for several hours (6-12 hrs)
- Warm to 70°F
- Recheck moisture



Corn Flowability

- 28% moisture freezes together
- 24% 25% some binding
- <24% to assure flow</p>
- Foreign material affects flow

Danger!

25% - 30% Moisture Corn

- Pile so can mechanically load
- 28% corn @ 40°F, AST = 30 days
- Aerate to keep corn temperature <30°F</p>
- High Temperature Dry by early February

Holding 22% - 24% Corn

- Cool to 20°F
- High temperature dry by early March
 - Deterioration in early spring (AST)

Grain Temperature

Average Maximum Air Temp.

February 1 - 15° March 1 - 27° April 1 - 45° May 1 - 65°

Solar Radiation (Btu/ft²-day)

	Wall	Roof
Feb. 21	1725	1800
Jun. 21	800	2425

Periodically Cool Keep under 30°F

Let Stand Over Winter

- Spring (March) moisture content ≈19-21%
- Field losses unknown Check stalk & shank
- Snow accumulation 40" = 4" water

HT Dry vs. Stand Over Winter

Propane Drying Cost Per Point Moisture per Bushel vs. Harvest Loss

- \$0.02 X Propane Price
- \$0.02 X \$2.00/gal. = \$0.04 per point/bu.
- @ 10 pts. = \$0.40/bu.
- @ \$3.00 corn
- \$0.40/bu. / \$3.00 = 0.13 = 13%
- @ 120 bu./ac. = 16 bu./ac.

Uncovered Piles

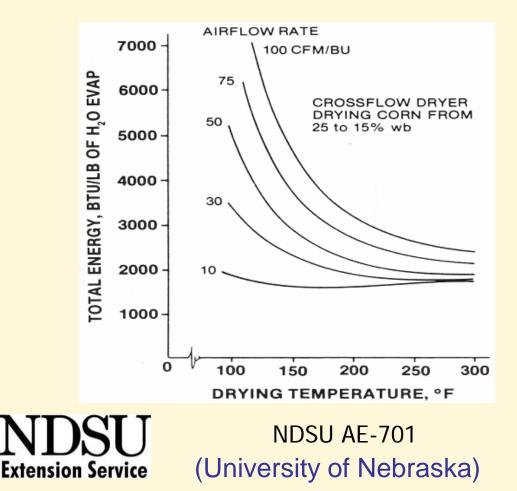
- 1-inch rain increases moisture content of 1 ft. of corn by 9 percentage points
- Grain 43% voids Water will not run off before a crust forms?

Grain Piles

 Prepared bottom surface
 Negative pressure holds cover
 Designed and managed aeration is critical for piles.

Poly Bag Storage

- Sealed bag does not prevent mold growth or insect infestation.
- Grain must be dry!
- Run bags north-south
- Create soft elevated surface for bags
- Grain temperature follows average outdoor temperature.

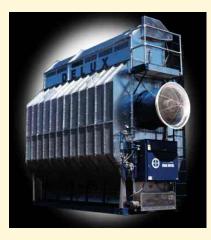

High Temp. Dryer Management

- High temperatures, fast drying, fast cooling creates stress cracks, broken kernels & lower final test weight
- High moisture increases scorching potential - Reduce plenum temperature

Energy requirements of a conventional cross-flow dryer as a function of drying air temperature and airflow rate.

Energy required to remove a pound of water is reduced at higher plenum temperatures and lower airflow rates.

Use the maximum temperature that will not damage the grain.


Drying Energy Cost Estimation

High Temperature Drying~210°F

Assumes 2,500 Btu/lb water

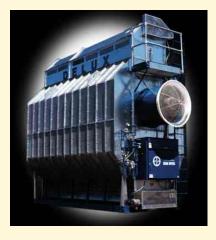
Propane cost / bu.- point moisture = 0.02 x price/gal 0.02 x \$2.00/gal = \$ 0.04/bu.-pt.

0.02 x \$1.50/gal = \$ 0.03/bu.-pt.

@ \$2.00/gal propane, estimated propane cost to dry corn from 26% to 16% is
\$0.04/bu.-pt. x 10 pts = \$0.40/bu.

At 2,000 Btu/lb. = 0.018 x Propane Price

Fuel Cost


Cost per bu. \$1.85 gal. Propane, \$.10/kWh					
5% Pt. Remova					
Pressure Heat					
Pressure Cool	16.0				
Full Heat 13.1					
Pressure Heat					
Vacuum Cool	12.5				
Pressure Heat					
Vacuum Cool					
Heat Reclaim	9.0				

Estimate Propane Quantity Needed

Propane gallons = 0.02 x bu. x point moisture

Propane = 0.02 x 1,000 bu x 10 pts = 200 gallons

Based on 2,500 Btu/lb.

For 2,000 use 0.016/bu. pt.

Test Weight Increase When Drying

Adjustment added to the corn wet-harvest test weight to obtain an expected test weight after drying to 15.5 percent moisture.

Test Weight Adjustment (lb/bu.)								
Harvest Mechanical Damage (Percent)	Harvest Moisture Content (Percent)							
	30	28	26	24	22	20	18	16
45	0.3							
40	0.7	0.2						
35	1.3	0.7						
30	1.8	1.3	0.8					
25	2.4	1.9	1.4	0.9	0.3			
20	3.1	2.6	2.0	1.5	1.0	0.5		
15	3.8	3.2	2.8	2.2	1.7	1.2	0.6	0.2
10	4.5	1.0	3.5	2.9	2.2	1.9	1.4	0.8
5	5.3	4.7	2.2	3.7	3.0	2.7	2.1	1.6
0	6.1	5.6	5.0	4.5	4.0	3.5	2.9	2.4

Affected by:

- * Kernel Damage
- * Drying Temperature

* Variety

Normally ¹/₄ to 1/3 lb/pt.

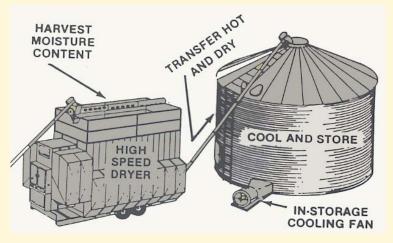
Moisture Shrink (Weight loss due to moisture loss)

Moisture Shrink (%) = $\underline{Mo - Mf}_{100} \times 100$ 100 – Mf Example: Corn dried from 25% to 15% moisture

Shrink%= $\frac{25\% - 15\%}{100\% - 15\%}$ x 100 = 11.76%

Shrink Factors

(% weight loss/percentage point moisture loss)


15.5%	1.1834
13.5%	1.1561
13.0%	1.1494
10.0%	1.1111

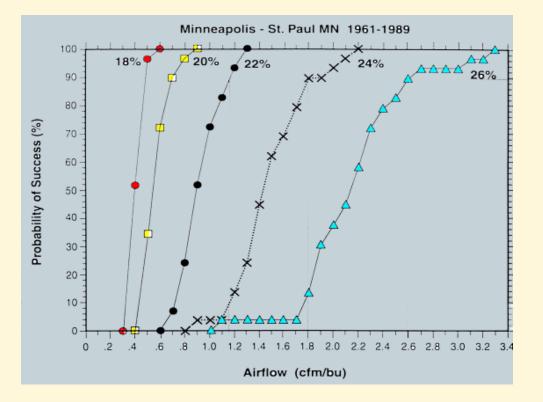
Example: The moisture shrink drying corn from 25.5% to 15.5% is 10pts x 1.1834 = 11.8%

In-Storage Cooling

- •Immediately cool, Airflow rate ≈ 12 cfm/bu-hr of fill rate
- •About 1-1.5 percentage point moisture reduction (0.1 0.15 / 10°F)
- •Reduce condensation if outdoor temperature is below 50°F by partial cooling in the dryer typically to about 90°F

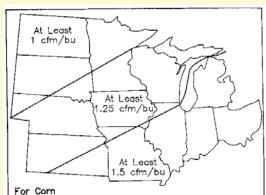
In-storage cooling requires rapid cooling and cooler initial grain temperature to limit condensation. Slow cooling saves more energy, but storage problems typically occur near the bin wall.

Natural Air and Low Temperature Corn Drying


21% Initial Corn Moisture Content, Average ND Climatic Conditions

	Drying Time (Days)				
Month & added heat	Temp. (°F)	RH	EMC	1.0 cfm/bu	1.25 cfm/bu
Oct. +3°F (fan)	50	58%	13.5%	42	34
Oct. 15 – Nov +3°F (fan)	37	66%	15.8%	65	52
Nov. +3°F (fan)	30	64%	16.0%	70	56
Nov. +3°F (fan)+2°F	32	58%	14.6%	65	52
Nov. +10°F	37	48%	12.5%	51	41

Using a humidity controlled heater reduces the potential for over-drying the corn


Minimum Recommended Airflow Rate For Natural Air Drying Corn

Wilcke and Morey, University of Minnesota Bu-6577-E, 1995

Airflow	Moisture
Rate	Content
<u>(cfm/bu)</u>	(%)
1.00	21
1.25	22
1.5	23
2.0	24
2.3	25

If harvested after October 15, a maximum moisture content of 22% is required. If harvested earlier, a lower moisture content is recommended.

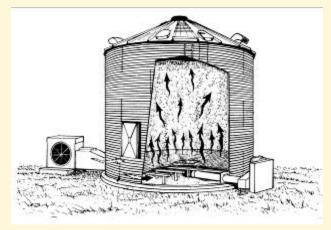
Fan Power Required

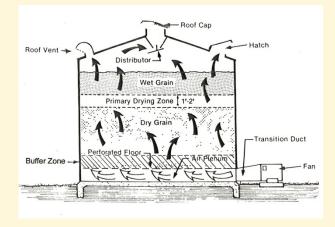
Energy efficiency maximum depth about 22 ft. and airflow rate about 1.0 cfm/bu.

	Corn Depth (ft)								
Airflow Rate	16	16 18 20 22 24							
(cfm/bu)		hp per 1,000 bu							
1.0	0.6	0.8	1.1	1.3	1.7				
1.25	1.1	1.4	1.8	2.3	2.9				
1.5	1.7	2.2	2.9	3.6	4.5				

Horsepower calculated based on a 42 ft diameter bin

- 42 ft diameter bin, corn 36 ft deep, 1.0 cfm/bu
- Fan = 180 hp, static pressure = 17-inches wg.





Air Drying

- 21% Maximum moisture content
- 1.0 cfm/bu. minimum airflow rate
- Start when fall temperatures average <50°F</p>
- Cool to 20-30°F for winter storage
- Start drying when temperature average >40°F

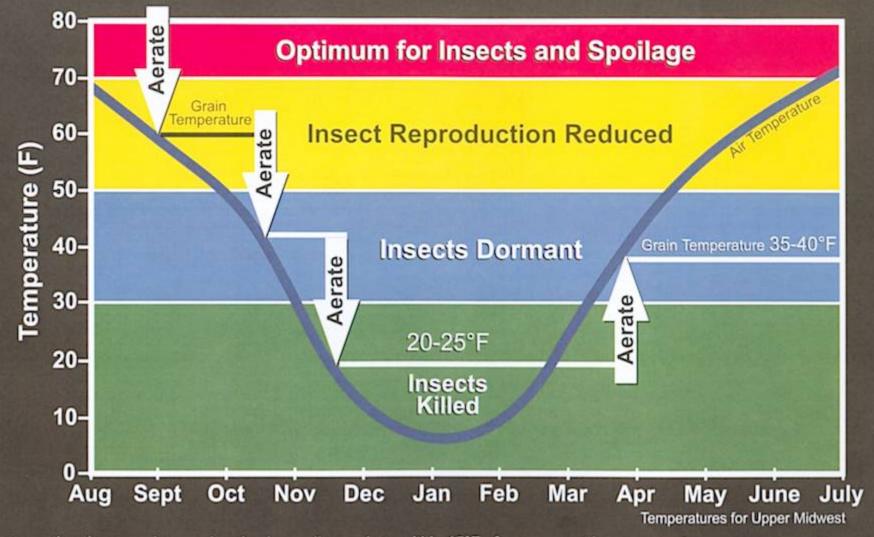
Condensation may freeze over vents when outside air temperatures are near or below freezing

Leave fill and access open

Iced over vents will damage bin

Storability

Cracked, broken, immature corn spoils easier Test weight is an indicator of storability Variety variation


"Approximate" Allowable Storage Time for Cereal Grains (Days)

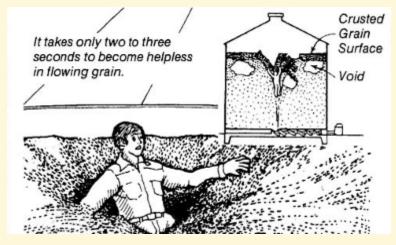
Moisture	Grain Temperature (°F)							
Content	30°	40°	50°	60°	70°	80°		
(%)	Approximate Allowable Storage Time (Days)							
14	*	*	*	*	200	140		
15	*	*	*	240	125	70		
16	*	*	230	120	70	40		
17	*	280	130	75	45	20		
18	*	200	90	50	30	15		
19	*	140	70	35	20	10		
20	*	90	50	25	14	7		
22	190	60	30	15	8	3		
24	130	40	15	10	6	2		
26	90	35	12	8	5	2		
28	70	30	10	7	4	2		
30	60	25	5	5	3	1		

NDSU Extension Service

* Exceeds 300 days

Cool Grain to Prevent Storage Problems

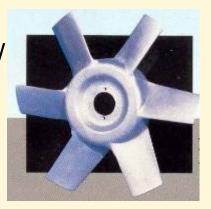
* Prevent crusting due to moisture migration by cooling grain to within 15°F of average outdoor temperatures.
* Cooling grain by 10°F doubles its allowable storage time


Dr. Kenneth J. Hellevang, I NDSU Extension Service

Grain Hazards

NDSU Extension Service

Bridging transfers load to the bin wall



CAUGHT IN THE GRAIN! AE-1102

Moldy Grain Health Hazard

Ice on blade may cause it to disintegrate

For More Information

Internet Search: NDSU Grain Drying & Storage

Department of Agricultural and Biosystems Engineering