

Improving management of white mold in dry edible beans: 1. Row spacing

Michael Wunsch

North Dakota State University Carrington Research Extension Center

Impact of row spacing on dry bean agronomic performance under white mold pressure Carrington and Oakes, ND 2019, 2020

Pinto beans	Row spacing inches	Seeding rate pure live (viable) seeds pls/ac	Plant population end-of-season (at maturity) plants/ac	Low disease pressure <20% of canopy (30-inch rows) 12 studies WHITE MOL	Intermediate disease pressure 20-40% of canop (30-inch rows) 8 studies	by >40% of canopy (30-inch rows) 7 studies
<u>Varieties:</u> 'Palomino' (24 studies)	$\frac{12}{100} = \frac{12}{100} = 1$					
'Vibrant' (3 studies)	22.5	70,000	52,427	11 ab	36 ab	60 a
	15	70,000	52,818	11 ab	38 b	59 a
	7.5	70,000	53,144			
				YIELD (pour	nds/acre)	
	30	70,000	50,894	3015	2596 a	1919 a
	22.5	70,000	52,427	3022 •	2424 a	1836 a
	15	70,000	52,818	3398 •	2522 a	1876 a
	7.5	70,000	53,144	3305 a	2482 a CV: 8.1	1738 a CV: 8.0

Data are from studies conducted in Carrington and Oakes, ND in 2019 and 2020 with no foliar fungicide, one or two fungicide applications (Topsin at 40 fl oz/ac or Topsin followed by Endura at 8 oz/ac 10-14 days later), fallow ground, direct-seeded into winter rye terminated 10-14 days prior to planting, or direct-seeded into rye terminated 0-3 days after planting.

Plots were 10 feet wide and 25 feet long at seeding. The middle 5 feet by 20 feet were assessed for disease and yield.

Within-column means followed by different letters are significantly different (P < 0.05; Tukey procedure).

Impact of row spacing on dry bean agronomic performance under white mold pressure Carrington and Oakes, ND 2019, 2020

Kidney beans	Row spacing inches	Seeding ratePlant populationpure live (viable) seedsend-of-seaso (at maturity)pls/acplants/ac		Low disease pressure <20% of canopy (30-inch rows) 6 studies	Intermediate disease pressure 20-40% of canopy (30-inch rows) 5 studies	(30-inch rows) 7 studies	
Varieties:				WHITE MOL	D SEVERITY	(% of canop	y)
'Pink Panther'	30	70,000	52,559	5 ab	34 a	46	а
(6 studies) 'Dynasty' (6 studies)	22.5	70,000	50,606	4 ab	32 a	47	a
'Rosie' (6 studies)	15	70,000	53,488	5 b	33 a	49	а
	7.5	70,000	55,979	2 a CV: 19.2	35 CV: 14.9	46 CV: 11.0	а
				YIELD (pour	ids/acre)		
	30	70,000	52,559	3015 a	1799	1446 a	
	22.5	70,000	50,606	3022	1878	1514 ª	
	15	70,000	53,488	3398	a <mark>2309</mark> a	a 1632 a	
	7.5	70,000	55,979	3305 al	2054 at CV: 10.6	0 1466 a CV: 13.1	

Data are from studies conducted in Carrington and Oakes, ND in 2019 and 2020 with no foliar fungicide, one or two fungicide applications (Topsin at 40 fl oz/ac or Topsin followed by Endura at 8 oz/ac 10-14 days later), fallow ground, direct-seeded into winter rye terminated 10-14 days prior to planting, or direct-seeded into rye terminated 0-3 days after planting.

Plots were 10 feet wide and 25 feet long at seeding. The middle 5 feet by 20 feet were assessed for disease and yield.

Within-column means followed by different letters are significantly different (P < 0.05; Tukey procedure).

IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing row spacing

Impact of row spacing on white mold:

PINTO BEANS:

- White mold severity was minimized in wide (30-inch) rows at all levels of disease pressure.
- When less than 20% of the canopy was diseased at the end of the season, pinto bean yield was maximized when pinto beans were grown in narrow (7.5-inch or 15-inch) rows.
- When more than 20% of the canopy was diseased at the end of the season, there was no statistical difference in yields across row spacings but a trend of higher yield in wide (30-inch) rows.

IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing row spacing

Impact of row spacing on white mold:

KIDNEY BEANS:

- When less than 20% of the canopy was diseased at the end of the season, white mold severity was minimized in narrow (7.5-inch) rows that maximized the spacing between adjacent plants.
- When more than 20% of the canopy was diseased at the end of the season, row spacing had little or no impact on white mold severity in kidney beans.
- At all levels of white mold pressure, yields were maximized when kidney beans were seeded to 15-inch rows.

Improving management of white mold in dry edible beans: 2. Seeding rate

Michael Wunsch

North Dakota State University Carrington Research Extension Center

Impact of seeding rate on dry bean agronomic performance under white mold pressure Carrington and Oakes, ND

2019

Pinto beans

Varieties: 'Palomino' (6 studies), 'Vibrant' (3 studies)

Row spacing inches	Seeding rate pure live (viable) seeds pls/ac	Plant population end-of-season (at maturity) plants/ac	Low disease pre <20% of car (30-inch rows 4 studies	ssure nopy 2 3) (20-40% ((30-inch ro 4 studies	pressure of canopy ows)	(30-inch rows 1 study	canopy	Low disease pre <20% of ca (30-inch rows 4 studies	nopy s)	Intermedi disease pr 20-40% of (30-inch row 4 studies	ressure canopy vs)	High disease (40-60% d (30-inch ro 1 study	of canopy
			WHITE	MOLL	D (% C	of cano	py)		YIELD (pour	ids/acre)		
30	120,000	96,439	11 a		36	ab	57	ab	3182	de	2846	ab	2403	а
30	70,000	48,536	8 a		22	а	58	ab	3083	е	2937	а	2267	а
22.5	120,000	85,054	12 =		44	b	60	ab	3614	bcd	2439	b	2318	а
22.5	70,000	42,646	8 a		28	ab	51	ab	3326	cde	2653	ab	2345	а
15	120,000	90,750	10 a		42	b	75	b	3867	ab	2849	ab	2041	а
15	70,000	48,972	8 a		35	ab	56	ab	3737	abc	2772	ab	2430	а
7.5	120,000	115,454	10 a		36	ab	72	b	4148	a	2826	ab	1888	а
7.5	70,000	49,513	9 a CV: 26.7		37 CV: 20.4	ab	46 CV: 15.0	а	3937 CV: 6.1	ab	2643 CV: 6.4	ab	2173 CV: 13.6	а

Impact of increasing **seeding rate** from 70,000 to 120,000 viable seeds/ac on white mold severity and yield in pinto beans. Data are from studies conducted in Carrington and Oakes, ND in 2019 with no foliar fungicide, one or two fungicide applications, fallow ground, direct-seeded into winter rye terminated 10-14 days prior to planting, or direct-seeded into rye terminated 0-3 days after planting. *Within-column means followed by different letters are sign. different (P < 0.05; Tukey procedure).*

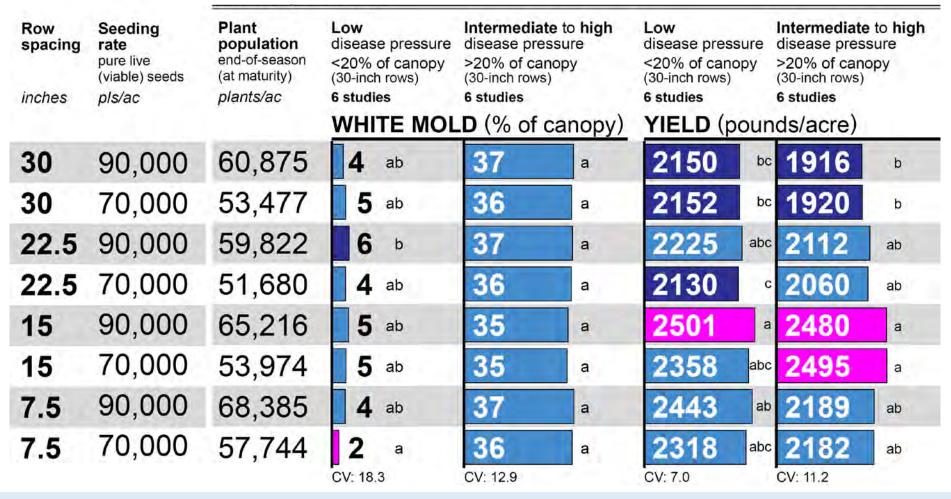
Impact of seeding rate on dry bean agronomic performance under white mold pressure Carrington, ND 2020

Pinto beans

Varieties: 'Palomino' (3 studies)

	Row spacing inches	Seeding rate pure live (viable) seeds pls/ac	Plant population end-of-season (at maturity) plants/ac	Low disease <20% of (30-inch 3 stu	canopy n rows) dies
				WHITE MOLD (% of canopy)	YIELD (pounds/acre)
easing om 70,000	30	90,000	76,935	8 a	3205 b
le seeds/ac severity	30	70,000	60,959	8 a	3193 b
nto beans. studies Sarrington	22.5	90,000	84,820	10 a	3166 b
Carrington, h no foliar or two	22.5	70,000	70,218	8 a	3142 b
cations.	15	90,000	85,476	11 a	3356 ab
means	15	70,000	65,817	7 a	3494 a
ferent . different	7.5	90,000	89,685	10 a	3301 ab
У	7.5	70,000	68,483	8 a	3265 ab
				CV: 25.4	CV: 4.1

Impact of increasing seeding rate from 70,000 to 90,000 viable seeds/ac on white mold severity and yield in pinto beans. Data are from studies conducted in Carrington, ND in 2020 with no foliar fungicide, one or two fungicide applications.


Within-column means followed by different letters are sign. different (P < 0.05; Tukey procedure).

Impact of seeding rate on dry bean agronomic performance under white mold pressure Carrington, ND

2020

Kidney beans

Varieties: 'Pink Panther' (3 studies), 'Dynasty' (3 studies), 'Rosie' (6 studies)

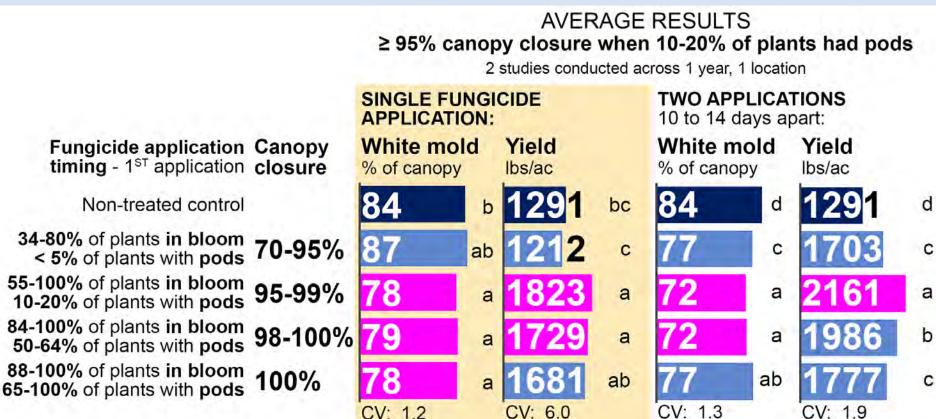
Impact of increasing **seeding rate** from 70,000 to 90,000 viable seeds/ac on white mold severity and yield in pinto beans. Data are from studies conducted in Carrington, ND in 2020 (pinto beans) and Carrington and Oakes in 2019 and 2020 (kidney beans) with no foliar fungicide, one or two fungicide applications. *Within-column means followed by different letters are sign. different (P < 0.05; Tukey procedure).*

IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing seeding rate

Impact of seeding rate on white mold:

PINTO AND KIDNEY BEANS:

- Increasing seeding rate from 70,000 to 90,000 viable seeds/ac (pinto and kidney beans) was generally associated with higher white mold severity.
- Increasing seeding rate from 70,000 to 120,000 viable seeds/ac (pinto beans) conferred moderate to sharp increases in white mold severity.
- Increasing seeding rate above 70,000 viable seeds/ac was associated with little or no yield gains in pinto and kidney beans grown under white mold pressure.


Improving management of white mold in dry edible beans: 3. Fungicide application timing

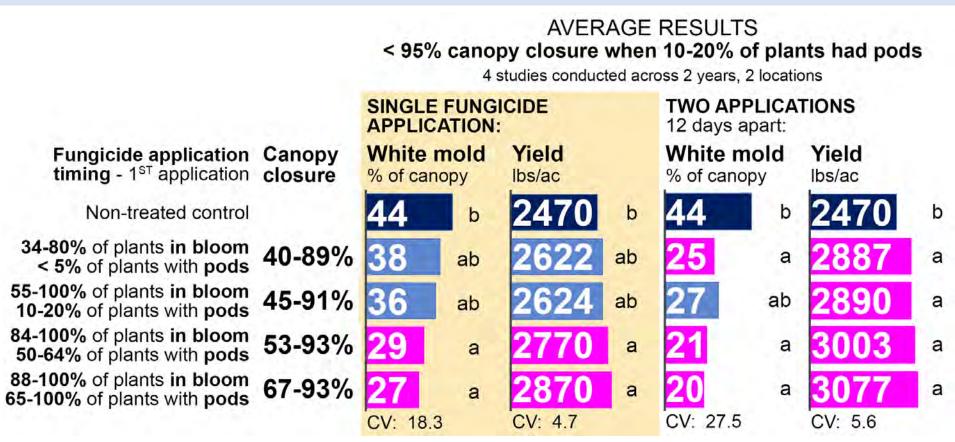
> Michael Wunsch North Dakota State University Carrington Research Extension Center

Carrington and Oakes, ND (2017, 2020, 2021)

In pinto beans, fungicide applications were optimized when 10-20% of plants had initial pods when the canopy was at or near closure at this growth stage

(average \geq 95% of the ground covered)

Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

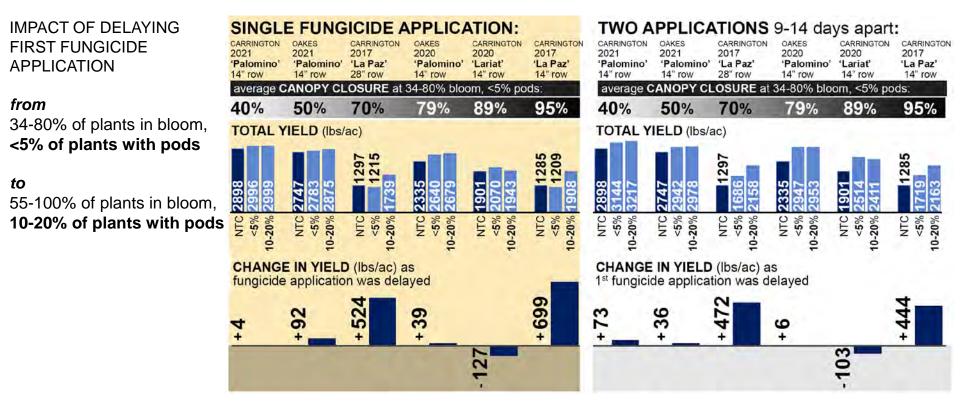

Spray volume: 15 gal/ac

1. PINTO BEANS

Carrington and Oakes, ND (2017, 2020, 2021)

In pinto beans, fungicide applications were optimized when 50-100% of plants had initial pods when the canopy was open at these growth stages

(average < 95% of the ground covered)

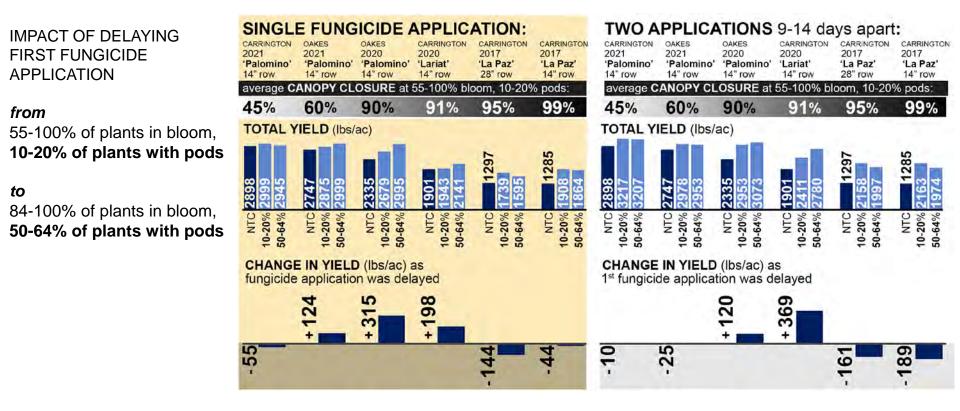

Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Spray volume: 15 gal/ac

Carrington and Oakes, ND (2017, 2020, 2021)

Delaying the first fungicide application from bloom initiation (<5% of plants with pods) **to initial pod development** (10-20% of plants with pods)

was <u>associated with increased yield</u> in 5 of 6 studies when fungicides were applied once and 5 of 6 studies when fungicides were applied twice.

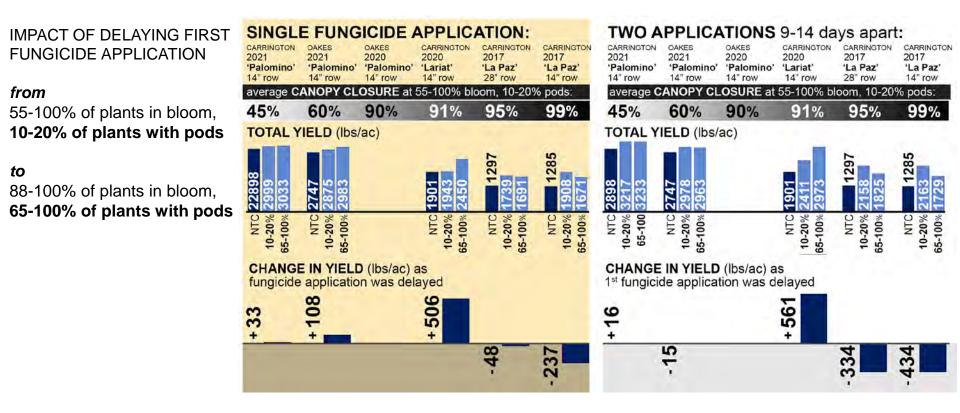


Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Carrington and Oakes, ND (2017, 2020, 2021)

Delaying the first fungicide application from 10-20% of plants with pods to 50-64% of plants with pods

was generally associated with increased yield when the canopy was open at 10-20% pod and <u>consistently associated with reduced yield</u> when the canopy was at/near closure at 10-20% pod.



Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Carrington and Oakes, ND (2017, 2020, 2021)

Delaying the first fungicide application from 10-20% of plants with pods to 65-100% of plants with pods

was generally associated with increased yield when the canopy was open at 10-20% pod and consistently associated with reduced yield when the canopy was at/near closure at 10-20% pod.

Fungicide applied: SINGLE FUNGICIDE APPLICATION - Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) TWO FUNGICIDE APPLICATIONS - Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

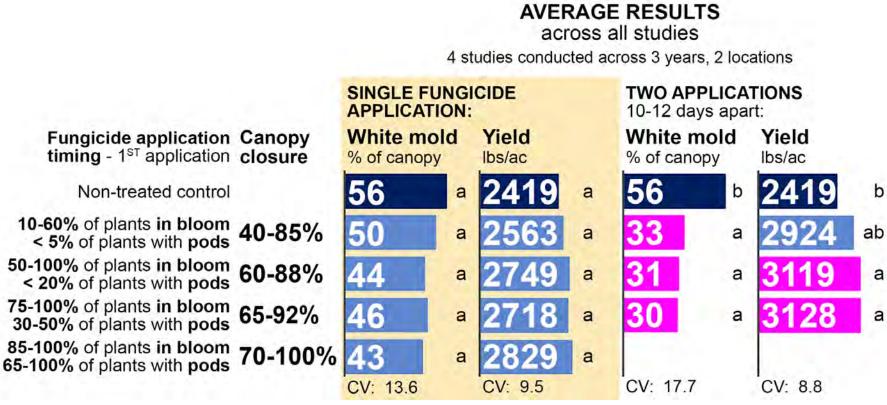
IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing fungicide application timing

Impact of fungicide application timing on white mold:

PINTO BEANS:

- Applying fungicides when 10-20% of plants had at least one initial pinshaped pod was optimal in pinto beans when the canopy was at or near closure (≥ 95% average closure).
- Applying fungicides when 50-100% of plants had at least one initial pinshaped pod was optimal in pinto beans when the canopy was open (< 95% average closure) initial pod development.

The number of field studies conducted was small, and follow-up research is needed to confirm these findings. Continued fungicide timing research is planned for 2022.

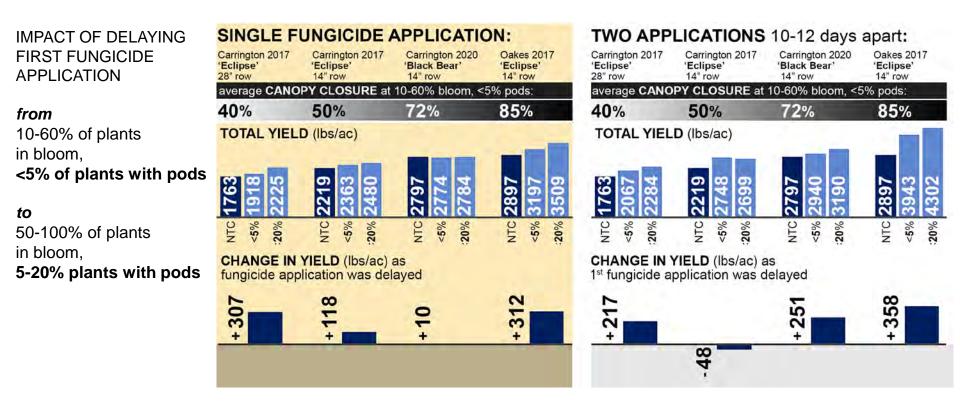


2. BLACK BEANS

Carrington and Oakes, ND (2017, 2020)

In black beans, average yields were maximized by delaying fungicide applications until 30-50% or 65-100% of plants had initial pods

BUT delaying applications beyond 20% plants with pods conferred highly variable results across individual studies - see next slides.

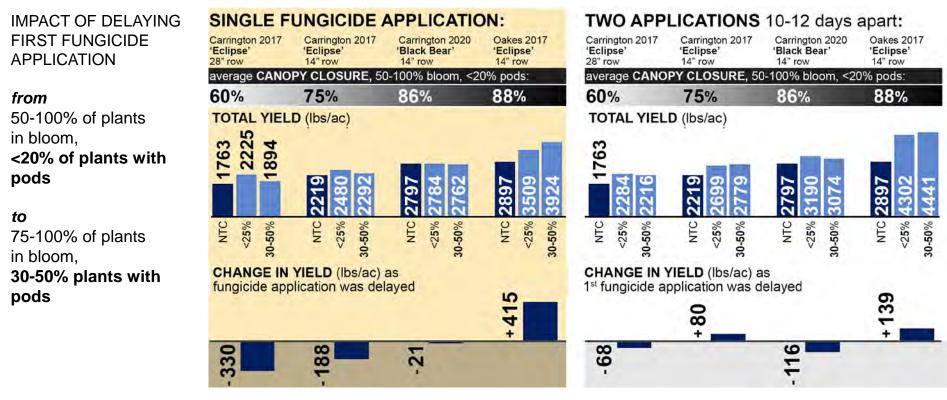


Fungicide applied: SINGLE FUNGICIDE APPLICATION - Topsin @ 30 fl oz/ac; TWO FUNGICIDE APPLICATIONS - Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac

Carrington and Oakes, ND (2017, 2020)

Delaying the first fungicide application from bloom initiation (<5% of plants with pods) to initial pod development (5-20% of plants with pods)

was <u>associated with increased yield</u> in 4 of 4 studies when fungicides were applied once and 3 of 4 studies when fungicides were applied twice.


Fungicide applied: SINGLE FUNGICIDE APPLICATION - Topsin @ 30 fl oz/ac; TWO FUNGICIDE APPLICATIONS - Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac

2. BLACK BEANS

Carrington and Oakes, ND (2017, 2020)

Delaying the first fungicide application from 5-20% of plants with pods to 30-50% of plants with pods

was <u>associated with decreased yield</u> in 3 of 4 studies when fungicides were applied once and 2 of 4 studies when fungicides were applied twice.

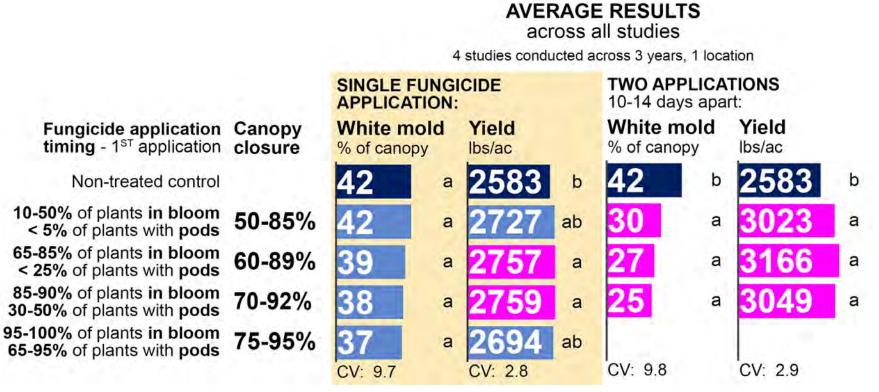
Fungicide applied: SINGLE FUNGICIDE APPLICATION – Topsin @ 30 fl oz/ac; TWO FUNGICIDE APPLICATIONS – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac

IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing fungicide application timing

Impact of fungicide application timing on white mold:

BLACK BEANS:

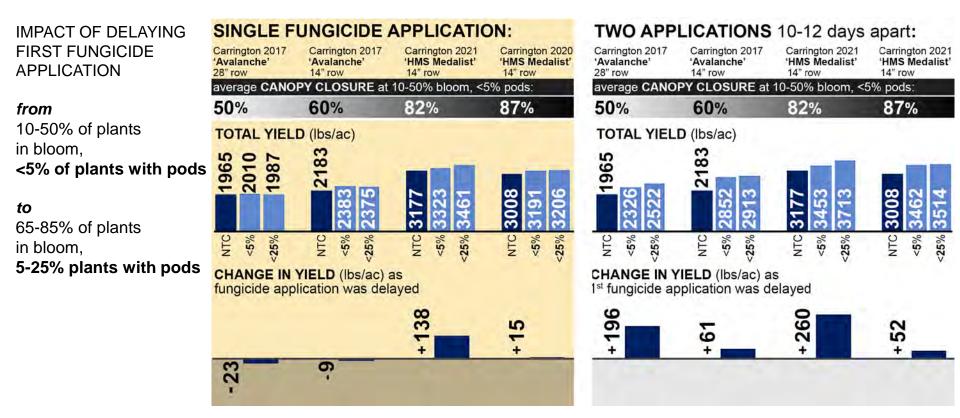
- Applying fungicides when 5-20% of plants had at least one initial pinshaped pod was optimal in black beans when the canopy was open (< 90% average closure) at this growth stage.
- No testing was conducted on black beans with a closed canopy during initial pod development.
- Once 20% of plants have developed initial pods, fungicide applications should only be delayed if conditions do not favor white mold


The number of field studies conducted was small, and follow-up research is needed to confirm these findings. Continued fungicide timing research is planned for 2022.

Optimizing fungicide application timing for white mold management in dry beans 3. NAVY BEANS Carrington, ND (2017, 2020, 2021)

In navy beans, average yields were maximized by delaying fungicide applications until 5-50% had initial pods (one application) or 5-25% had initial pods (two applic.)

BUT delaying applications beyond 25% plants with pods conferred highly variable results across individual studies - see next slides.

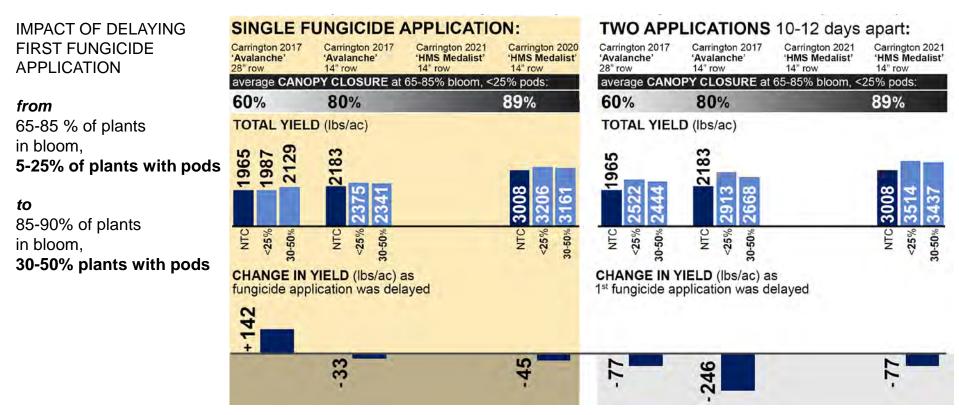


Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Optimizing fungicide application timing for white mold management in dry beans **3. NAVY BEANS** Carrington, ND (2017, 2020, 2021)

Delaying the first fungicide application from bloom initiation (<5% of plants with pods) **to initial pod development** (5-25% of plants with pods)

was <u>associated with increased yield</u> in 2 of 4 studies when fungicides were applied once and 4 of 4 studies when fungicides were applied twice.



Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Optimizing fungicide application timing for white mold management in dry beans **3. NAVY BEANS** Carrington, ND (2017, 2020, 2021)

Delaying the first fungicide application from bloom initiation (<5% of plants with pods) to initial pod development (5-25% of plants with pods)

was <u>associated with decreased yield</u> in 2 of 3 studies when fungicides were applied once and 3 of 3 studies when fungicides were applied twice.

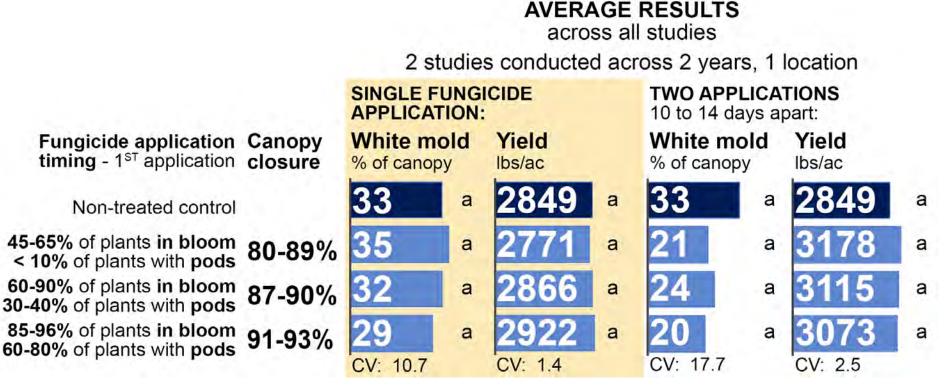
Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (studies from 2017, 2020); Topsin @ 40 fl oz/ac (studies conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2017, 2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing fungicide application timing

Impact of fungicide application timing on white mold:

NAVY BEANS:

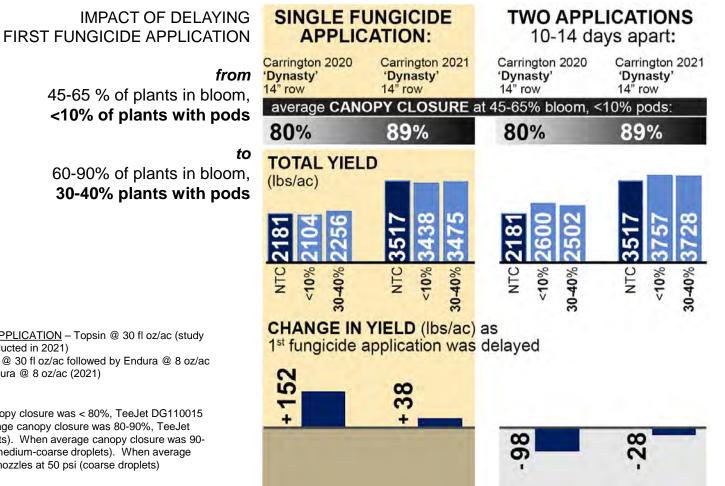
- Applying fungicides when up to 25% of plants had at least one initial pinshaped pod was optimal in navy beans when the canopy was open (< 90% average closure) at this growth stage.
- No testing was conducted on navy beans with a closed canopy during initial pod development.
- Once 25% of plants have developed initial pods, fungicide applications should only be delayed if conditions do not favor white mold


The number of field studies conducted was small, and follow-up research is needed to confirm these findings. Continued fungicide timing research is planned for 2022.

Optimizing fungicide application timing for white mold management in dry beans **4. KIDNEY BEANS** Carrington, ND (2020, 2021)

In kidney beans, optimum fungicide application timing appeared to differ by the number of fungicide applications (one versus two)

BUT only two field studies were conducted, an insufficient sample size for reaching rigorous conclusions.

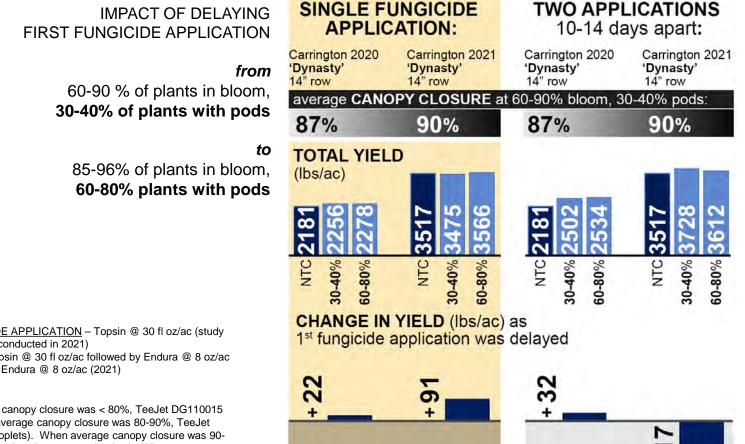


Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (study from 2020); Topsin @ 40 fl oz/ac (study conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Optimizing fungicide application timing for white mold management in dry beans **4. KIDNEY BEANS** Carrington, ND (2020, 2021)

Delaying the first fungicide application from bloom initiation (<10% of plants with pods) to initial pod development (30-40% of plants with pods)

was <u>associated with increased yield</u> in 2 of 2 studies when fungicides were applied once and <u>decreased yield</u> in 2 of 2 studies when fungicides were applied twice.


Fungicide applied: <u>SINGLE FUNGICIDE APPLICATION</u> – Topsin @ 30 fl oz/ac (study from 2020); Topsin @ 40 fl oz/ac (study conducted in 2021) <u>TWO FUNGICIDE APPLICATIONS</u> – Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Spray volume: 15 gal/ac

Carrington, ND (2020, 2021)

Delaying the first fungicide application from 30-40% of plants with pods to 60-80% of plants with pods

was associated with increased yield in 2 of 2 studies when fungicides were applied once and decreased yield in 1 of 2 studies when fungicides were applied twice.

Fungicide applied: SINGLE FUNGICIDE APPLICATION - Topsin @ 30 fl oz/ac (study from 2020); Topsin @ 40 fl oz/ac (study conducted in 2021) TWO FUNGICIDE APPLICATIONS - Topsin @ 30 fl oz/ac followed by Endura @ 8 oz/ac (2020), Topsin @ 40 fl oz/ac followed by Endura @ 8 oz/ac (2021)

Spray volume: 15 gal/ac

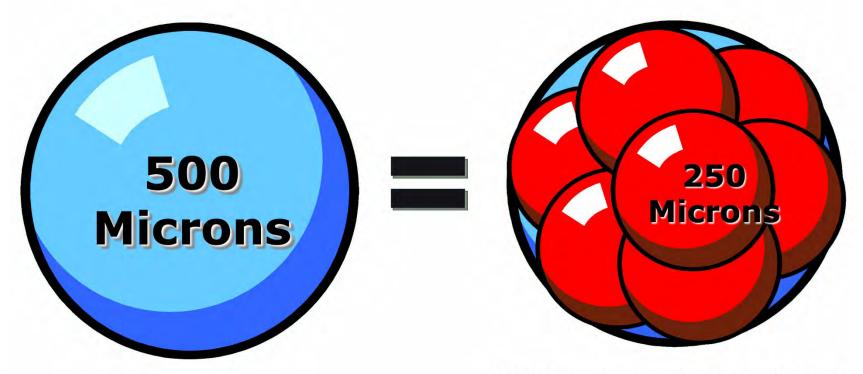
IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing fungicide application timing

Impact of fungicide application timing on white mold:

KIDNEY BEANS:

- Optimum fungicide application timing appeared to differ by the number of fungicide applications (one versus two)
 - When a single fungicide application was made, kidney bean yield was maximized when applications were delayed until 60-80% of plants had initial pods.
 - When two fungicide applications were made, kidney bean yield was maximized when the first application was made before 30% of plants had initial pods.
- BUT only two field studies were conducted, an insufficient sample size for reaching rigorous conclusions. Continued fungicide timing research is planned for 2022.

Improving management of white mold in dry edible beans: 4. Optimizing fungicide spray droplet size

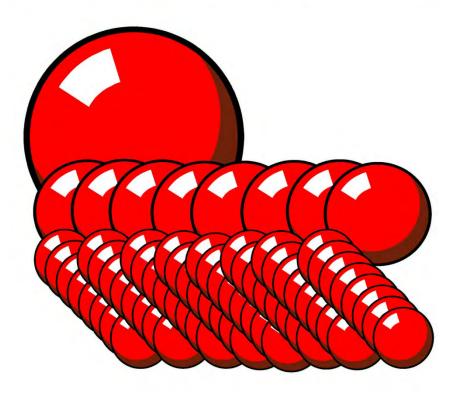

> Michael Wunsch North Dakota State University Carrington Research Extension Center

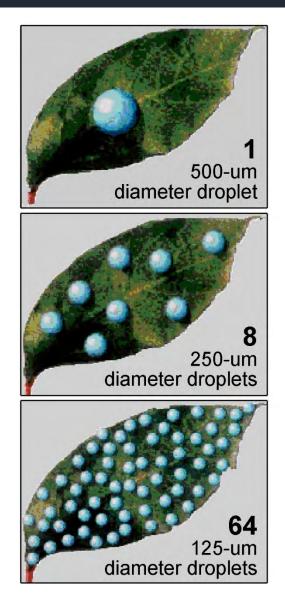
OPTIMIZING FUNGICIDE DEPOSITION WITHIN A CROP CANOPY

Droplet size

Cutting droplet diameter in half

Results in eight times as many droplets


(there is one more droplet in the rear)


Image adapted from a presentation by Bob Wolf (Kansas State Univ.); Bobby Grisso and Pat Hipkins (Virginia Tech Univ.); and Tom Reed (TeeJet)

OPTIMIZING FUNGICIDE DEPOSITION WITHIN A CROP CANOPY Droplet size

0.065 mm³ spray volume =

one 500-um diameter droplet eight 250-um diameter droplets sixty-four 125-um diameter droplets

OPTIMIZING FUNGICIDE DEPOSITION WITHIN A CROP CANOPY Droplet size

... but larger droplets have greater velocity, drift less. Increased velocity and reduced drift improves canopy penetration.

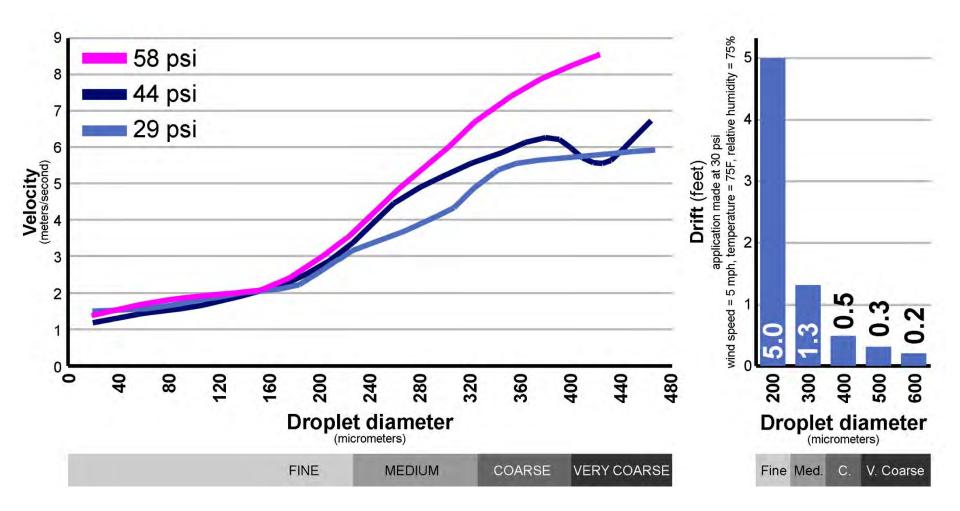


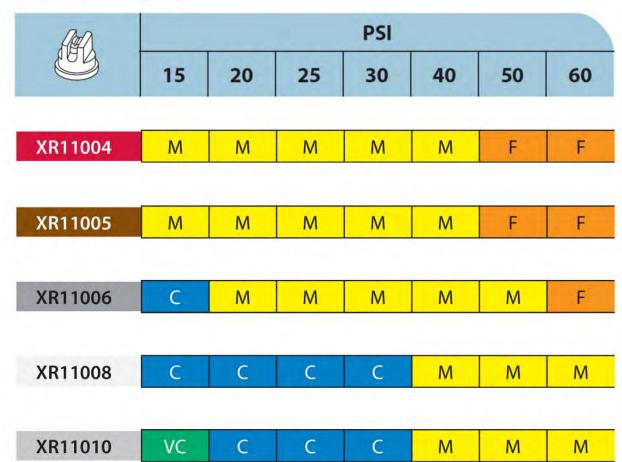
Image adapted from a presentation by Bob Wolf (Kansas State Univ.); Bobby Grisso and Pat Hipkins (Virginia Tech Univ.); and Tom Reed (TeeJet)

Experimental Methods

1. WILGER nozzles

Spray droplet size estimates were based on information provided by the manufacturer.

			R		RTTO-	ssure:	Re		RIMO-I ded Press	sure:	Re	commence 30-10	ded Press	sure:	Re		ded Pres 00 PSI	sure:
Tip Cap	Flow Rate	PSI		the local division of	1D (Dro R Serie			-	11µ (Dr R Serie		% <200	μ (Drift 110° M				-	ets) R Serie	s
1000	USGPM		VMD		<200	-	VMD		<200	and the second	Concession of the local division of the loca		<200				<200	
04	0.43	50	209	26%	47%	96%	275	15%	30%	96%	355	8%	17%	91%	447	5%	10%	79%
			Fir 106-2					edium -340µ			Co 341-	barse 403µ				ery Co 04-50		
			ER 50		-04		SR 50		-04		MR 50)-04	•	DR 50)-04	
			FINE DROPLETS			MED DRC		TS		COARSE DROPLETS			VERY COARSE DROPLETS					


OPTIMIZING FUNGICIDE DEPOSITION WITHIN A CROP CANOPY

Experimental Methods

2. TEEJET nozzles

Spray droplet size estimates were based on information provided by the manufacturer.

XR TeeJet® (XR)

XR11004 50 psi FINE DROPLETS **XR11005** 40 psi

MEDIUM-FINE DROPLETS

XR11006 35 psi MEDIUM DROPLETS

XR11008 40 psi MEDIUM-COARSE DROPLETS

XR11010 30 psi COARSE DROPLETS

OPTIMIZING FUNGICIDE SPRAY DROPLET SIZE Calibration

The initial calibration was conducted with water.

Objectives:

- 1. Nozzle selection: Tips with output deviating from advertised specifications discarded
- 2. Initial identification of pulse width needed to deliver <u>15 gal/ac</u> spray volume at target driving speed

Spot-On sprayer calibrator model SC-1 (Innoquest, Inc.; Woodstock, IL)

The final calibration was conducted with fungicide in the field immediately before application.

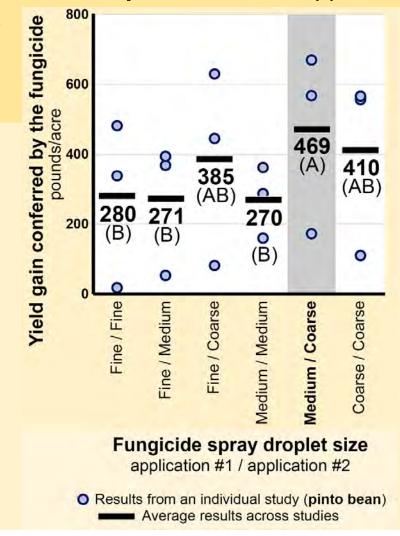
Objectives:

- Ensure a precise spray volume of 15 gal/ac. Manual adjustments to pulse width were made as needed.
- 2. Confirm that all nozzles are operating correctly – consistent output across all nozzles; no plugs.

Tractor-mounted sprayer equipped with a pulsewidth modulation system from Capstan AG.

Spray volume: 15 gal/ac Pulse width manually calibrated to maintain a constant spray volume across tips differing in output.

Driving speed: 6.0 to 10.5 mph, depending on the study.



IMPACT OF SPRAY DROPLET SIZE: TEEJET NOZZLES

PINTO BEANS: Fungicide efficacy was optimized with medium droplets in the 1st application and coarse droplets in the 2nd application

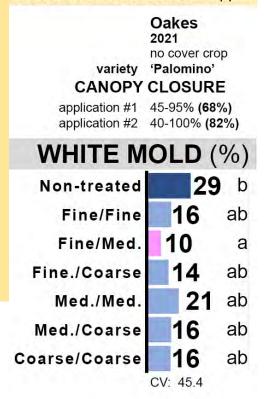
when the canopy was open (average <80% closure) at the 1st fungicide application and at /near closure (average 91-95% closure) at the 2nd fungicide application.

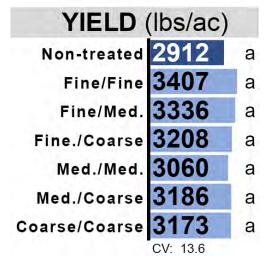
	variety	Carringto 2021 no cover cro 'Palomino'	P	Oakes 2021 rye, late term 'Palomino'		Oakes 2021 rye, early te 'Palomino		Combined Analysis 3 studies		
	application #1 application #2	CANOPY 40-60% (52% 80-100% (95	%)	SURE whe 45-85% (64% 50-100% (91)	45-90% (76 75-100% (9	5%)	pplied 52-76% (64% 91-95% (93%		
		WHITE	EM	OLD (%	60	f cano	py)			
26 Ion	Non-treated	55	a	12 a		27	b	31	b	
t si:	Fine/Fine	46	а	8 a		12	а	22	а	
Fungicide droplet size # application / 2 nd application	Fine/Med.	45	а	9 a		14	а	23	а	
/ 2nd	Fine./Coarse	47	а	10 a		16	а	25	а	
Fungicide	Med./Med.	48	а	10 a		14	а	24	а	
gici	Med./Coarse	43	а	7 a		14	а	21	a	
de la	Coarse/Coarse	42	а	7 a		15	а	21	а	
		CV: 13.2		CV: 48.4		CV: 34.1		CV: 8.9		
		YIELD	(po	ounds/a	cre	e)				
ion te	Non-treated	2161	а	3363	а	2944	b	2822	b	
droplet size / 2 nd application	Fine/Fine	2642	а	3382	a	3282	ab	3102	ab	
app	Fine/Med.	2529	а	3416	a	3337	a	3094	ab	
/ 2 ^{md}	Fine./Coarse	2605	а	3445	a	3573	a	3208	a	
tion	Med./Med.	2522	а	3523	a	3230	ab	3092	ab	
Fungicide droplet size 1 st application / 2 ^m application	Med./Coarse	2829	а	3536	а	3510	а	3292	а	
un ap	Coarse/Coarse	2716	а	3473	a	3509	a	3233	а	
		CV: 9.8		CV: 7.4		CV: 8.1		CV: 3.7		

LETTERS DENOTE STATISTICAL SEPARATION (P < 0.05 in bar graphs at left and P < 0.10 in scatter plot at right)

Fungicide: Topsin at 40 fl oz/ac followed by Endura at 8 oz/ac Application timing: Early bloom, initial pod development Spray volume: 15 gal/ac

Row spacing: 14 inches Seeding rate: 90,000 pure live seeds/ac Driving speed: 10.5 mph (Carrington); 6.0 mph (Oakes)


Nozzles (Carrington): TeeJet XR11005 nozzles at 60 psi, medium droplets were applied with XR11006 nozzles at 35 psi, and coarse droplets were applied with XR11010 nozzles at 30 psi **Nozzles (Oakes):** TeeJet XR11004 nozzles at 60 psi, medium droplets were applied with XR11006 nozzles at 35 psi, and coarse droplets were applied with XR11010 nozzles at 30 psi


IMPACT OF SPRAY DROPLET SIZE: TEEJET NOZZLES

ave. CANOPY < 70%, 1st applic. ave. CANOPY 80-85%, 2nd applic.

PINTO BEANS: When the canopy was open at both applications (<85% closure) applying fungicides with fine droplets appeared to maximized yield

Statistical separation was lacking and follow-up research is needed to confirm.

LETTERS DENOTE STATISTICAL SEPARATION (P < 0.05)

 Fungicide: Topsin at 40 fl oz/ac followed by Endura at 8 oz/ac

 Application timing: Early bloom, initial pod development

 Spray volume: 15 gal/ac Row spacing: 14 inches Seeding rate: 90,000 pure live seeds/ac

 Driving speed: 6.0 mph (Oakes)

 Nozzles (Oakes): TeeJet XR11004 nozzles at 60 psi, medium droplets were applied with XR11006 nozzles at 35 psi, and coarse droplets were applied with XR11010 nozzles at 30 psi

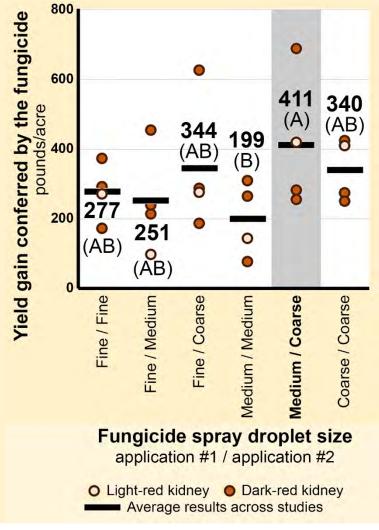
IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing fungicide droplet size

Impact of fungicide droplet size on white mold:

PINTO BEANS:

- White mold management was optimized when fungicide droplet size was calibrated relative to canopy closure when fungicides were applied
- When canopy closure was open at the first application (<80% average closure) and near closure (91-95% average closure) at the second application, applying fungicides with medium droplets at the first application and coarse droplets at the second application optimized white mold management
- When the canopy was very open at the first application (68% average closure) and open at the second application (82% average closure), applying fungicides with fine droplets at the first application and fine to medium droplets at the second application appeared to optimize fungicide performance.
- This is research in progress, and additional testing is planned for 2022.

IMPACT OF SPRAY DROPLET SIZE: TEEJET NOZZLES


KIDNEY BEANS: Fungicide efficacy was optimized with medium droplets in the 1st application and coarse droplets in the 2nd application

when the canopy was near closure (87-94% average closure) at the 1st fungicide application

and at or near closure

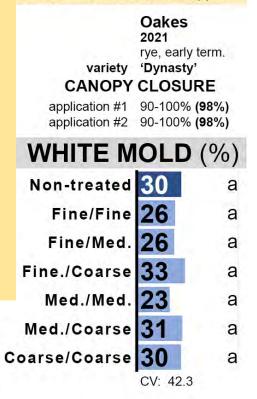
(91-99% closure) at the 2nd fungicide application

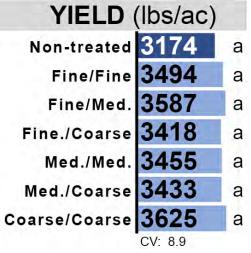
	droplet size treatment		CLC	Oakes 2021 o rye, late term. 'Dynasty' CLOSURE when			^{op} /ere a	and the second		Combined Analysis 4 studies	
	application #1 application #2	80-100% (9 60-100% (9	75-1009 95-1009			60-100% (87%) 75-10 100% (100%) 90-10			87-91% (92%) 91-100% (97%)		
	WHITE MOLD (% of canopy)										
/ 2 nd application	Non-treated	50	а	30	а	56	b	53	a	47	b
application	Fine/Fine	45	а	30	а	46	а	46	а	42	ab
ap	Fine/Med.	41	а	27	а	51	ab	52	а	43	ab
	Fine./Coarse	42	а	28	а	50	ab	49	а	42	ab
st application / 2 nd	Med./Med.	49	а	29	а	49	ab	48	а	44	ab
pplic	Med./Coarse	36	а	26	а	50	ab	42	а	39	а
1st a	Coarse/Coarse	38	а	25	а	47	а	46	а	39	а
		CV: 26.8		CV: 34.		CV: 13.7		CV: 23.9		CV: 6.5	
		YIELD) (p		Contraction in the local division of the loc						
tion	Non-treated	2934	а	318	9 a	2431	b	2659	b	2803	b
application	Fine/Fine	3307	а	336	1 a	2723	ab	2931	ab	3080	а
nd ap	Fine/Med.	3387	а	342	9 a	2645	ab	2757	ab	3054	а
application / 2nd	Fine./Coarse	3560	а	347	0 a	2619	ab	2941	ab	3148	а
st application	Med./Med.	3199	а	326	6 a	2740	а	2804	ab	3002	ab
pplic	Med./Coarse	3622	а	347	0 a	2686	ab	3078	а	3214	а
1st a	Coarse/Coarse	3354	a	343	9 a	2706	ab	3074	а	3143	а
		CV: 11.7		CV: 6.9		CV: 9.1		CV: 11.4		CV: 3.2	

LETTERS DENOTE STATISTICAL SEPARATION (P < 0.05 in bar graphs at left and P < 0.10 in scatter plot at right)

Fungicide: Topsin at 40 fl oz/ac followed by Endura at 8 oz/ac Application timing: Early bloom, initial pod development Spray volume: 15 gal/ac

Row spacing: 14 inches Seeding rate: 90,000 pure live seeds/ac Driving speed: 10.5 mph (Carrington); 6.0 mph (Oakes)


Nozzles (Carrington): TeeJet XR11005 nozzles at 60 psi, medium droplets were applied with XR11006 nozzles at 35 psi, and coarse droplets were applied with XR11010 nozzles at 30 psi **Nozzles (Oakes):** TeeJet XR11004 nozzles at 60 psi, medium droplets were applied with XR11006 nozzles at 35 psi, and coarse droplets were applied with XR11010 nozzles at 30 psi


IMPACT OF SPRAY DROPLET SIZE: TEEJET NOZZLES

ave. CANOPY 98%, 1st applic. ave. CANOPY 98%, 2nd applic.

KIDNEY BEANS: When the canopy was closed at both applications (average 98% closure) applying fungicides with coarse droplets appeared to maximized yield

Statistical separation was lacking and follow-up research is needed to confirm.

LETTERS DENOTE STATISTICAL SEPARATION (P < 0.05)

 Fungicide:
 Topsin at 40 fl oz/ac followed by Endura at 8 oz/ac

 Application timing:
 Early bloom, initial pod development

 Spray volume:
 15 gal/ac
 Row spacing:
 14 inches
 Seeding rate:
 90,000 pure live seeds/ac

 Driving speed:
 6.0 mph (Oakes)
 Nozzles (Oakes):
 TeeJet XR11004 nozzles at 60 psi, medium droplets were applied with XR11006 nozzles at 35 psi, and coarse droplets were applied with XR11010 nozzles at 30 psi

IMPROVING WHITE MOLD MANAGEMENT IN DRY BEANS Optimizing fungicide droplet size

Impact of fungicide droplet size on white mold:

KIDNEY BEANS:

- White mold management was optimized when fungicide droplet size was calibrated relative to canopy closure when fungicides were applied
- When canopy closure was near closure at the first application 87-94% average closure) and at or near closure (91-99% average closure) at the second application, applying fungicides with medium droplets at the first application and coarse droplets at the second application optimized white mold management
- When the canopy was closed at both applications, applying fungicides with coarse droplets at both applications appeared to optimize fungicide performance.
- This is research in progress, and additional testing is planned for 2022.

Thank You!

Michael Wunsch, Jesse Hafner, Suanne Kallis, Xavier Klocke NDSU Carrington Research Extension Center Heidi Eslinger, Leonard Besemann, Kelly Cooper, Seth Nelson NDSU Robert Titus Research Farm, Oakes

RESEARCH FUNDED BY THE NORTHARVEST BEAN GROWERS ASSOCIATION, USDA SPECIALTY CROP BLOCK GRANT PROGRAM ADMINISTERED BY THE ND DEPARTMENT OF AGRICULTURE, AND THE ND CROP PROTECTION PRODUCT HARMONIZATION BOARD AND REGISTRATION BOARD NDSU NORTH DAKOTA AGRICULTURAL

